

Innovative Solutions for Foundations and Deep Basements

Dr. Noppadol Phienwej Geotechnical and Earth Resources Engineering Field

AIT TECHNOLOGY EVENT

AIT TECHNOLOGY EVENT

Geotechnical & Earth Resources Engineering School of Engineering and Technology Asian Institute of Technology

Established in 1967

Produced 800+ master graduates and 30+ doctoral graduates

Areas of Specialization

- Soil Engineering
- Engineering Geology
- Rock Engineering
- Geo-system Exploration and Petroleum Geoengineering

SOIL ENGINEERING

Ground Improvement Geosynthetic Engineering

Deep Excavation & Tunneling

Numerical Computation

Soft Soil Properties

Pile Foundation

Slope Stability

ENGINEERING GEOLOGY & ROCK ENGINEERING

- Site Characterization
- Geological Hazards
- Hydrogeology

- Underground Rock Excavation
- Rock Slope Engineering
- Dam Engineering
- Hydro-power Engineering Application

Geosystem Exploration and Petroleum Geoengineering

- Exploration for Natural resources/Site Characterization
- Exploration and Production of Oil and Gas Fields

Presentation Contents

- Overview of Foundation and Excavation Works in Soft Soil
- Constraints in Construction in Bangkok as an Example
 - Bangkok Geology & Soft Subsoil
 - Land Subsidence
 - Groundwater condition & effect
- Deep Excavations
 - Method of Deep Excavations
 - Deep Excavations for Mass Rapid Transit System
- Foundation
 - Pile Capacity & Pile Foundation Design
 - Pile Capacity Improvement
 - New Trend of Piled Foundation Design for Highrise Buildings
- Conclusions

CITIES – URBAN DEVELOPMENT

Necessity of Underground Space Use

Deep Foundation & Excavation

Pile Foundation & Deep Excavation

Method, Technology and Design

Case of Bangkok Geology

Low Lying and Risk of Flooding

AIT TECHNOLOGY EVENT

AIT Technology Event

EFFECTS OF SOFT FOUNDATION SOIL AND LAND SUBSIDENCE

27

TECHNOLOGY EVEN

EFFECTS OF SOFT FOUNDATION SOIL AND LAND SUBSIDENCE ON FOUNDATION DESIGN

Piezometric Level in (Shallow) PD Aquifer at Jatujak Park

AIT TECHNOLOGY EVENT

THERE IS A NEED TO STOP LAND SUBSIDENCE BY MINIMIZING GROUNDWATER PUMPING TO PREVENT IMPACTS ON ENVIRONMENTAL ISSUES AND BUILDING FOUNDATION

BUT ON THE OTHER HAND THE AMOUNT OF GROUNWATER REBOUND NEEDS BE CONTROLLED FOR SAFETY OF EXISTING STRUCTURE FOUNDATIONS

AIT TECHNOLOGY EVENT

Deep Excavations

- Type of wall
- Wall and lateral support design
- Stability of base of excavation
 - Water seepage or soil upheave from uplift
 - Basal heave instability of clayey soil
- Control of ground movements Prevent damages to third party's properties
- Optimize construction time schedule
 - Means to reduce lateral support members
 - Bottom-up versus top-down basement construction

Steel Sheet Pile Walls 32 m deep Excavation in Soft clay, Singapore

Concrete Diaphragm Walls – Tie Backs

Soil-Cement Columns- Methods of Construction

Deep Cement Mixing (DCM) Jet Cement Grouting (JCG)

AIT TECHNOLOGY EVENT

Soil-Cement Column/Jet Grout Walls AIT TECHNOLOGY EVENT

Improvement of DCM pile on Lateral capacities in Bangkok Clay by adding RC pile or timber core AIT Research – Noppadol&Bergado

Internal Lateral Support: Bracing System or Struts

AIT TECHNOLOGY EVENT

Concreting of the infrastructure

** Concreting of the raft

Modes of failure

- Overall shear failure
 - Push in
 - Basal heave
- Hydraulic Uplift- Bottom heave of overlying clay

Prevention of Basal Instability

- Base strut by jet grouting
- Cross wall
- Soil Berm

Soil Base improvement – Jet grouting – Base struts

Cross Wall

Selection of Wall Types for Deep Excavations

TECHNOLOGYEVENT

- Depth
- Size of Area
- Subsoils Groundwater Conditions
- Conditions of Surrounding Buildings/Structures
- Cost
- Construction Time

Flexible versus Rigid Walls S AIT TECHNOLOGY EVENT

Numerical Analysis is an Indispensible Tool in Design of Deep Excavations

Effect of Excavation on adjacent Buildings and Structures

Circular Excavation

Ring Structure

Numerical Study on a new Strut-Free Counterfort **Embedded Wall in Singapore**

(by: Er. SS Chuah and Er. Prof. Harry Tan) - National University of Singapore

1. Other Examples of Strut-Free excavation system used in Singapore with regular shapes

Fig. 1 Peanut shape formed by 30m diameter diaphrage The Sail @ Marina Bay

Fig. 3 2 levels of RC circular ring slab and beam (78m diameter each) constructed at La Salle College at Prinsep Street

Fig. 5 Marina Bay Sands Integrated Resort South Podium Donut of 120m

3. 3D Quadrant Model study and Twin Counterfort Wall model

Fig. 13 One quadrant of 3D counterfort model showing the geological iles based on various boreholes information

constructed at SOHO @ Eu Tong Seng Street

Fig. 4 Circular shape formed by 130m diameter diaphragm wall panels at City Square residential project at Jalan Besar/Kitchener Road

Fig. 6 Downtown Line C912 peanut shape temporary shafts no. 3 and 4 formed by secant pile walls for excavation in close proximity to the existing light rail transit (LRT) viaducts

Fig. 7 Downtown Line C912 circular and peanut shape temporary shafts no. 1 and 2 respectively to suit the existing LRT structure and its foundation piles

Fig. 14 3D twin counterfort walls model (plan and

2. New strut-free counterfort embedded diaphragm wall

Fig. 8 Tribeca residential project with 2 basements using counterfort diaphragm wall panels and counterfort slab with perimeter diaphragm wall

Fig. 9 Tribeca site investigation boreholes, counterfort walls and slab and a quadrant model for numerical study

Fig. 10 Typical cross sectional view of diaphragm wall, counterfort wall and slab

Fig. 15 These are site photos of Strut-Free counterfort diaphragm wall ystem adopted in South Korea

Fig. 16 Typical geological profile at Tribeca site

AIT NETWORK

Minimizing Lateral Support Singapore Case Study

AIT TECHNOLOGY EVENT

Geotechnical Design for Deep Excavations

2D FEA Borehole adopting worst relevant borehole BH5

Geotechnical Design for Deep Excavations

<u>3D FEA</u> Borehole adopting worst relevant borehole

AIT TECHNOLOGY EVENT

Wall Deflection

<u>3D FEA</u> Borehole adopting worst boreholes BH5

[*10⁻³m]

AIT TECHNOLOGY EVENT

Maximum Value = 131.06*10⁻³ m (Element 1036 at Node 1163) / Minimum Value = 402.21*10⁻⁶ m (Element 941 at Node 16516)

Ground Settlement

<u>3D FEA</u> Borehole adopting worst borehole BH5

AIT TECHNOLOGY EVENT

Wall Bending Moment

<u>3D FEA</u> Borehole adopting worst borehole BH5

350.000 300.000 250.000 200.000 150.000 100.000 50.000 0.000 -50.000 -100.000 -150.000 -200.000 -250.000 -300.000 -350.000 -400.000 -450.000 -500.000 -550.000

AIT TECHNOLOGY EVENT

[kNm/m]

400.000

Top down construction versus Bottom

TECHNOLOGY EVENT

up construction

- Time versus Cost
- Depth, Soil
- Substructure
- Preformed column

Bottom-Up Construction

AIT TECHNOLOGY EVENT

APPLICATION OF TOP-DOWN CONSTRUCTION METHOD

View of stanchion embedded in bored pile at base slab level

AIT TECHNOLOGY EVENT

Excavation Reached to Final Depth -19.10m

Casting RC Column Encasing Stanchion

Master Schedule of Construction Comparison between Top-down and Bottom-up Method

• Significant time saving by Top-Down Method

Method	Major Activity	Duration	Construction Period (Month)								
		(month)	4	8	12	16	20	24	32	36	
Top-down	D-wall and piling	4.5									
	Sub-structure	10									
	Super-structure	12									
Bottom-up	D-wall and piling	4.5									
	Sub-structure	16									
	Super-structure	13									

T TECHNOLOGY EVENT

On Going and Upcoming Subway Construction in Bangkok

AIT TECHNOLOGY EVENT

Combined Methods of Station Excavation

SITE PLAN

-+-

NOTE :

4 ALL DESIGN SHALL CONFORM WITH RECENTLY TO THE BMA REGULATION AND MINISTRY REGULATION FOR THE FOCILITY PROVIDE FOR HANDYCAP, DISABLE AND THE AGE" BE. 2548

5 THIS STATION IS LOCATED WITHIN THE OLD CITY AREA (RATTANAKOSINISLAND) IT IS TO BE DESIGNED TO BE OF MINIMAL ENVIRONMENTALIMPACT, BOTH DURING AND AFTER CONSTRUCTION. STATION METHOD OF CONSTRUCTION AND THE DESIGN OF ALL ABOVE-GROUND STRUCTURES ARE SUBJECT TO THE APPROVAL OF THE NATIONAL ENVIRONMENTAL BOARD AND ALL OTHER 15 RELEVANT GOVERNMENT AUTHORITIES 10 20

Conceptual Design of Station Excavation

Hard Clay

FEM Analysis

Relative shear stresses Extreme relative shear stress 1,00

Alternative construction method actually adopted by Contractors

Difficult & Expensive

Risk Management

Missing Link Project Attennology event SRT Railways and Red Line-MRT

AIT Technology Event

) AIT TECHNOLOGY EVENT

Layout of SRT Missing Link underground section for Red Line and rails for normal intercity trains

Pile Foundation in Bangkok

Bored Piles for Different Sized Buildings

Bored Pile Capacity in Bangkok

Increasing Capacity by Grouting of Bored Piles Toe Grouting & Shaft Grouting

Bored Piles, Tips in Second Sand

1990, Silom Precious Tower (After Seafco)

PILED RAFT FOUNDATION CONCEPT

- Piled foundation concept
 - the piles are designed to carry the total weight of the structure.
 - any contribution of the raft being ignored
- Piled raft foundation concept
 - Some proportion of total load may be transferred directly from the raft to the soil.
 - Load carried by the piles is reduced and the number of piles may be minimized.

Pile Raft Design Analysis

Raft, El

Interactions:

Pile & Pile

Raft & Soil under-raft

Soil under- raft and pile

Complicated.

See Randolph, Wood

Piled Raft Design Analysis

Simplified Method of Plate on Spring Analysis

Raft, El

Model Piles as a series of springs => Unrealistic Soil

NO INTERACTION CONSIDERED

NO CONSIDERATION OF SOIL (ASSUME PILES TAKE ALL LOADS)

ERROR IN MOMENT AND SETTLEMENT OF RAFT

Piled Raft Design Analysis Plate on Elastic Spring Approach

- Spring constant from pile load test (single pile !).
- Use reduced values of spring stiffness for inner pile to account for pile interaction effect. Subjective?
- Complicated when superstructure load is not uniform. Use thick raft)how much?)
- How to account for effect of superstructure stiffness?

TECHNOLOGY EVENT

BANGKOK SUBSOIL CONDITION

- In Bangkok, the subsoil consists of thick deposit of clays.
- Tall buildings are founded on piles with raft foundation.
- The conventional concept may not be cost-effective
- Piled raft foundation concept should be considered
 - Raft is resting on Stiff clay layer (not soft clay)

Application of a piled raft foundation in Bangkok is not yet well developed.

• For the period of the last two decades, number of high-rise buildings has been rapid increasing in the cities all over the world. And piled raft foundation concept has been successful applied in many countries.

Ne	Touron	Structure	Load sh	nare (%)	Instru-	Settlement s _{max} (mm)	
INO	Iower	(height/storeys)	Piles	Raft	mentations		
1	Messe-Torhaus, Frankfurt	130m, 30-storey	75	25	Yes	N.A.	
2	Messeturn, Frankfurt	256m, 60-storey	57	43	Yes	144	
3	Westend 1, Frankfurt	end 1, Frankfurt 208m		51	Yes	120	
4	Petronas, Kuala Lampur ^{PF)}	450m, 88-storey	85	15	Yes	40	
5	QV1, Perth, West Australia	42-storey	70	30	N.A.	40	
6	Treptower, Berlin	121m	55	45	Yes	73	
7	Sony Center, Berlin	103m	N.A.	N.A.	Yes	30	
8	ICC, Hong Kong	490m, 118-storey	70 D)	30 ^{D)}	N.A.	N.A.	
9	Commerzbank, Frankfurt ^{PF)}	300m	96	4	Yes	19	
10	Skyper, Frankfurt	153m	63	27	Yes	55	

Piled raft foundations-Case histories (Phung, 2010)

www.civilax.com

PLAXIS

```
www.civilax.com
```


Complex Piled Raft Foundation Analysis

- Nicknamed "Dancing Towers"
- Office 351 m, Hotel 305 m, Residential 251 m high
- Piled raft foundations
- Bored piles 483 nos., 1.5 m dia, 45 m long
- Ground conditions:
- 0-10 m: Sand
- 10-25 m: Very/Weak Sandstone 25-30 m: Very/Weak Siltstone 30-40 m: Very/Weak Conglomerate >40m: Very/Weak Claystone

PLAXIS 3D FOUNDATION

Total Displacements u_y Maximum Value = 169.35*10⁻⁶ m (Element 6564 at Node 19201)

include - rouse re include avery

To be the tallest building in Bangkok

Piled-Raft-Foundation Design Check

CONCLUSIONS

- Application of piled raft foundation for high-rise buildings in Bangkok
 - Comparison of results given by different methods
 - The 3D FEM gave more realistic results. The load shared by piles via 3D FEM were only 70-80%. Therefore, plate on springs method, as current practice, seem to have significant error.
 - In addition, if piled raft foundation concept is applied, the number of piles can be reduced up to 50% and load shared by piles still remains around 70%. The analysis shows that settlement would increase around 50% which is not significant.

CONCLUSIONS

- Application of piled raft foundation for high-rise buildings in Bangkok
 - For case study analysis
 - The use of Beam on spring analysis assuming no bearing contribution of stiff clay below the raft yields huge inaccuracy in load on piles, bending moment, settlement in comparison with the actual behavior revealed by the rigorous 3D FEM foundation analysis.
 - Based on the piled raft foundation concept using the 3D FEM, the load shared by piles was only 85%. Subsequently, an adjustment could be made by reducing raft size, number of pile by one half, and raft thickness, in overall would yield a significant cost reduction from the design using the Beam on spring analysis and the piled foundation concept.

CONCLUSIONS

- Application of piled raft foundation for high-rise buildings in Bangkok
 - The piled raft foundation design concept can be used to reach the most optimal design.
 - It will also help solving problem with the large number of piles at close spacing for high-rise buildings constructed in small piece of land.

FECHNOLOGY EVENT

Kob Kun Krub Thank You